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Problem 1: BCS Mean-Field Theory
The mean-field BCS Hamiltonian is

HBCS =
∑

k

{
εk (nk,↑ + n−k,↓) + c†k,↑c

†
−k,↓∆ + ∆∗c−k,↓ck,↑

}
. (1)

When the mean-field ansatz was made to write the Hamiltonian in terms of the gap energy ∆, it was
necessary that ∆ obey the consistency-condition

∆ =
U

V

∑

k

〈c−k,↓ck,↑〉, (2)

where U is the effective attraction between unlike spins and V is the sample volume.
We are to determine all of the eigenenergies and eigenstates of this Hamiltonian, and study its

properties at finite temperature. We will do this using the method introduced by Bogoliubov1.

The key insight of Bogoliubov is that although the mean-field Hamiltonian (1) is clearly
not diagonal in the space of states created by the operators c†k,↑/↓, it may be diagonal
in a basis of states created by operators related to these via a simple SU2 transfor-
mation. Indeed, it may be the case that ‘electrons’ and ‘holes’ are the wrong degrees
of freedom to consider; we should at least look to see if the Hamiltonian is simpler
in terms of any collective degrees of freedom.

Along these lines, we define the rotated, ‘collective’ or ‘Bogoliubov’ creation and anni-
hilation operators bk,↑/↓ and b†k,↑/↓ given by

bk,↑ = Akck,↑ + Bkc†−k,↓;

b−k,↓ = Akc−k,↓ −Bkc†k,↑. (3)

It is clear that we desire this to be an SU2 transformation, which implies that |Ak|2+
|Bk|2 = 1. As an SU2-related basis of fermionic operators, these Bogoliubov operators
obey the normal anticommutation relations {bj , bk} = {b†j , b†k} = 0 and {b†j , bk} = δjk.

To clarify, we merely propose the transformations (3) and hope that an appropriate
choice of Ak and Bk will bring HBCS into diagonal form. Therefore, the first thing
we must do is re-cast the Hamiltonian in terms of ‘Bogoliubons’—and to do this, the
first thing we must do is invert the relationship (3).

Using the definitions (3) together with their Hermitian conjugates we obtain the system

ck,↑ = 1
Ak

bk,↑ − Bk

Ak
c†−k,↓

ck,↑ = − 1
B∗k

b†−k,↓ + A∗k
B∗k

c†−k,↓
and

c†−k,↓ = 1
Bk

bk,↑ − Ak

Bk
c†k,↑

c†−k,↓ = 1
A∗k

b†−k,↓ + B∗k
A∗k

c†k,↑
. (4)

By subtracting the related identities, we find that

ck,↑ = A∗kbk,↑ −Bkb†−k,↓;

c†−k,↓ = B∗
kbk,↑ + Akb†−k,↓. (5)

Now, writing the mean-field Hamiltonian in terms of the Bogoliubov operators, we en-
counter

HBCS =
∑

k

{
εk

[(
Akb†k,↑ −B∗

kb−k,↓
)(

A∗kbk,↑ −Bkb†−k,↓
)

+
(
B∗

kbk,↑ + Akb†−k,↓
)(

Bkb†k,↑ + A∗kb−k,↓
)]

+ ∆
(
Akb†k,↑ −B∗

kb−k,↓
)(

B∗
kbk,↑ + Akb†−k,↓

)
+ ∆∗

(
Bkb†k,↑ + A∗kb−k,↓

)(
A∗kbk,↑ −Bkb†−k,↓

) }
,

1This is the method discussed the course textbook, Tinkham’s Introduction to Superconductivity. Our analysis will
closely follow the discussion in that text.
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which at first-sight appears horrendous to expand. Using anti-commutation relations
to simplify things a bit,

HBCS =
∑

k

{
εk

[(|Ak|2 − |Bk|2
) (

b†k,↑bk,↑ + b†−k,↓b−k,↓
)

+ 2|Bk|2 − 2AkBkb†k,↑b
†
−k,↓ − 2A∗kB∗

kb−k,↓bk,↑
]

+ ∆
[
AkB∗

k

(
b†k,↑bk,↑ + b†−k,↓b−k,↓

)
−AkB∗

k + A2
kb†k,↑b

†
−k,↓ −B∗2

k b−k,↓bk,↑
]

+ ∆∗
[
A∗kBk

(
b†k,↑bk,↑ + b†−k,↓b−k,↓

)
−A∗kBk + A∗2k b−k,↓bk,↑ −B2

kb†k,↑b
†
−k,↓

]}

=
∑

k

{
2εk|Bk|2 − 2 Re (∆AkB∗

k) +
[
εk

(|Ak|2 − |Bk|2
)

+ 2 Re (∆AkB∗
k)

] (
b†k,↑bk,↑ + b†−k,↓b−k,↓

)

+ b†k,↑b
†
−k,↓

(
∆A2

k −∆∗B2
k − 2εkAkBk

)
+ b−k,↓bk,↑

(
∆∗A∗2k −∆B∗2

k − 2εkA∗kB∗
k

)}
. (6)

Now, because we are free to choose Ak and Bk any way we’d like—so long as the trans-
formation is SU2—we would obviously like to define them so that the off-diagonal
contributions to HBCS vanish—these are the last two terms in (6). Now, the off-
diagonal terms will vanish if the Bogoliubov coefficients are chosen to satisfy

∆A2
k −∆∗B2

k − 2εkAkBk = 0. (7)

This is a simple quadratic equation, the solution to which is simply2

Ak =
Bk

∆

(
εk ±

√
ε2k + |∆|2

)
≡ Bk

∆
(εk ±Ek) . (8)

With this condition, the last line of (6) vanishes. But we actually have a bit more
than that: the additional constraint |Ak|2 + |Bk|2 = 1 allows us to eliminate these
coefficients all-together3. Notice that (8) implies that, after a bit of algebra,

|Ak|2 =
|Bk|2
|∆|2 (εk ± Ek)2 = (1− |Ak|2) 1

|∆|2 (εk ± Ek)2 =
(εk ± Ek)2

|∆|2 + (εk ± Ek)2
= . . . =

1
2

(
1± εk

Ek

)
. (9)

And, similarly,

|Bk|2 =
1
2

(
1∓ εk

Ek

)
. (10)

Notice also that ∆AkB∗
k is manifestly real and specifically

Re (∆AkB∗
k) = ∆AkB∗

k = |Bk|2 (εk ± Ek) . (11)

Let us define the quasi-particle (‘Bogoliubon’) number operators ñk,↑ ≡ b†k,↑bk,↑ and
ñ−k,↓ ≡ b†−k,↓b−k,↓. Putting all of this together, we may re-express the BCS Hamil-
tonian completely in terms of the Bogoliubov operators.

HBCS =
∑

k

{
2εk|Bk|2 − 2|Bk|2 (εk ± Ek) +

[
εk

(|Ak|2 − |Bk|2
)

+ 2|Bk|2 (εk ± Ek)
]
(ñk,↑ + ñ−k,↓)

}
,

=
∑

k

{
∓ 2|Bk|2Ek +

(
εk ± 2|Bk|2Ek

)
(ñk,↑ + ñ−k,↓)

}
,

=
∑

k

{
εk ∓ Ek ± Ek (ñk,↑ + ñ−k,↓)

}
.

The physical requirement that the total energy be bounded below demands that ‘±’ 7→‘+’:
otherwise, the creation of Bogoliubons would lower the energy of the system without
bound. Therefore, we have shown that in terms of the Bogoliubon quasi-particles,

∴ HBCS =
∑

k

{
εk − Ek + Ek (ñk,↑ + ñ−k,↓)

}
. (12)

2We have not made use of the freedom to make Ak real—nor will we: it never is necessary.
3To be precise, there is still an arbitrary (unphysical) phase between Ak and Bk, and there is an insofar unspecified

sign in Ak. This sign will be determined below—until then, however, we’ll keep it unspecified.
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Notice that the Hamiltonian is diagonal in terms of the quasi-particles—it manifestly
commutes with the Bogoliubon number operators. Eigenstates are therefore labeled
by their momenta k and quasi-particle numbers: for a given momentum, let |k〉 be
defined as that which is annihilated by both bk,↑ and b−k,↓; clearly, |k〉 has both
quasi-particle numbers 0. Because the quasi particles are fermions, there can be at
most one of each kind at a given momentum. Therefore, the eigenstates of HBCS for
a given k are exactly

|k〉, b†k,↑|k〉, b†−k,↓|k〉, and b†k,↑b
†
−k,↓|k〉, (13)

with eigenenergies, respectively,

εk − Ek, εk, εk, and εk + Ek. (14)

Now, recall that the consistency of the mean-field Hamiltonian requires that

∆ =
U

V

∑

k

〈c−k,↓ck,↑〉.

To find the expectation value of the operator c−k,↓ck,↑ at a given momentum k, we’ll
need the partition function

Z =
∑

states

e−βH = e−b(εk−Ek) + 2e−βεk + e−β(εk+Ek) = 2e−βεk (1 + cosh(βEk)) . (15)

Now, we should express the operator (c−k,↓ck,↑) in terms of the Bogoliubov operators,

c−k,↓ck,↑ =
(
Bkb†k,↑ + A∗kb−k,↓

)(
A∗kbk,↑ −Bkb†−k,↓

)
,

= A∗kBk (ñk,↑ + ñ−k,↓ − 1) + A∗2k b−k,↓bk,↑ −B2
kb†k,↑b

†
−k,↓.

Because the last two terms do not commute with the Hamiltonian, they will not
contribute anything to the expectation value 〈c−k,↓ck,↑〉. Therefore4,

〈c−k,↓ck,↑〉 =
1
Z

∑

|ψ〉
A∗kBk〈ψ| (ñk,↑ + ñ−k,↓ − 1) e−βH |ψ〉,

=
∆eβεk

4Ek(1− cosh(βEk))

{
−e−β(εk−Ek) + e−β(εk+Ek)

}
,

= − ∆sinh(βEk)
2Ek(1− cosh(βEk))

,

= −∆
2

tanh (βEk/2)
Ek

.

So in the large-volume limit, the consistency demands that

−∆
V

U
= ∆

1
2

∫

fermi
surface

tanh
(

β
2

√
ε2k + |∆|2

)
√

ε2k + |∆|2 dεk =⇒ ∆ = 0 or − V

U
=

~ωc∫

0

tanh
(

β
2

√
ε2k + |∆|2

)
√

ε2k + |∆|2 dεk.

(16)
We were asked to argue that for low enough temperature, ∆ > 0 is consistent, but for

high enough temperatures only ∆ = 0 is possible. We will actually do a bit more and
determine the critical temperate, Tc, above which ∆ = 0 is required for consistency.
However, before we do that calculation, let us argue generally to understand the
results qualitatively.

At zero temperature, tanh(βEk/2) → 1 so that a non-zero ∆ would be determined by
the equation

−V

U
=

~ωc∫

0

dx√
x2 + |∆|2 = log

(
~ωc

(
1 +

√
1 +

|∆|2
(~ωc)2

))
− log(∆) ≈ log

(
2~ωc

|∆|
)

. (17)

Solving for ∆(T = 0) we find

|∆(T = 0)| ≈ 2~ωce
V/U . (18)

4On the borderline of triviality, we recall the identities sinh(ξ) = 2 sinh(ξ/2) cosh(ξ/2) and 1 + cosh(ξ) = 2 cosh2(ξ/2).
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Therefore, we know that for small enough temperature, ∆ 6= 0 is consistent. However,
for temperatures greater than about kT > 1

2

√
(~ωc)2 + |∆|2, we may Taylor-expand

the integrand of the consistency equation, yielding

−∆
U

V
= ∆

~ωc∫

0

dεk
1

Ek

(
β

2
Ek − β3

24
E3

k +
β5

240
E5

k − . . .

)
. (19)

Parametrically, if we suppose that ∆ 6= 0 then the constraint equation becomes a
polynomial linear in β and with a leading ∆ term of order β3∆2. Regardless of
the details of integration, the general solution to a polynomial equation of the form
c1∆2β3 + c2β = c3 has ∆ parametrically of the form ∆ ∼ 1/β3/2. But as β becomes
small, ∆ must therefore grow very large to compensate, immediately in contradiction
with the hypothesis that kT > 1

2

√
(~ωc)2 + |∆|2. −→←−

Therefore, we know that at sufficiently high temperatures the only consistent mean-
field Hamiltonian is one for which ∆ = 0. But we have shown also that at zero
temperature, ∆ > 0 is consistent and given by the expression above. Let us find the
temperature Tc where ∆ first vanishes.

When ∆ → 0, Ek → εk so that the consistency equation becomes

−V

U
=

βc~ωc/2∫

0

tanh(x)dx

x
= log (2eγE πβc~ωc) ; (20)

the integral was evaluated using a computer algebra package, and γE is Leonhard
Euler’s constant5. Combining this with the above, we find

∴ kTc = eγE π∆(0). (21)
‘óπερ ’έδει πoι�ησαι

5For fun, γE = limn→∞
�

Γ( 1
n )Γ(n+1)n1+1/n

Γ(2+n+ 1
n )

− n2

n+1

�
.


